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Localized potential spaces are quite useful in the theory of Fourier mul­
tipliers or multipliers with respect to orthogonal expansions (see, e.g., [8, 3,
2)]: They seem to be the right setting (i) to prove end-point multiplier
criteria on U-spaces (p near 1 or 2) and (ii) to interpolate (by the com­
plex method) between these end-poin t results. Localized Bessel potential
and Besov spaces have already been introduced by Strichartz [11] and by
Connett and Schwartz [3], who also derived their basic properties. In this
paper we want to give a concise derivation of the properties of the localized
Riemann-Liouville spaces RL(q, ex), which are a slight variant of the
localized potential spaces considered earlier. They turn out to coincide with
the spaces WBV q.~' exq> I, of functions of weak bounded variation con­
sidered in [6] and to coincide with the localized Riesz potential spaces
R(q, ex), 1 < q < 00, used in [2]; thus giving a proof of Theorem 2 in [2].
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1. DEFINITION AND BASIC EMBEDDING PROPERTIES OF RL(q, a)

Fix a nonnegative bump function ¢J E COO(~) with support in the interval
[1, 2] and define for a> 0, 1",; q"'; 00, the localized Riemann-Liouville
spaces

RL(q,a)= {mE Ltoc(O, 00): IlmIIRL(q,a)<OO}

where, using the notation m,(s) = m(ts),

(1)

with the standard Lq-norm on ~ and where the (fractional) derivative of
order a is defined for integrable functions h of compact support in (0, 00 )

by

(J E~, (2 )

in the distributional sense, Then we have, if h, h(a) E Lq, that

h(s) = C foo (t - s)"-lh(a)(t) dt
s

a.e. (3)

and further, if we set L1,h(s)=h(s+t)-h(s), L1~=L1,L1~-I,

a.e., k > a, (4)

where C is a constant independent of h.
These formulas are proved for 0 < a < 1, k = 1, e.g., in [6, Sect. 3], and

can readily be extended to arbitrary a> O. In particular it follows
immediately from (4) that if h(s) = 0 for S? a, then h(a)(s) = 0 for S? a, and
that in this case the integration over (0, 00) can be replaced by that over
(0, a). We start the discussion of the RL(q, a)-spaces by showing that the
definition is independent of a particular bump function.

LEMMA 1. If 1",; q",; 00, a> 0, and l/J E COO(~) is an arbitrary non­
negative bump function with compact support in (0, 00), then

(5)

is equivalent to the norm (1) on RL(q, a).
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Proof First assume 0 < IX < 1 and observe that by (3)

IltPm,llq~J:rx-ill (tP(- +r)m,(' +r))(x)llqdr

~ CllmIIRL(q,x)'

Since t/J has compact support there exist finitely many t i > 0 such that

N

~(s)= L tP(tjs)?:t:>O
i= 1

on supp t/J and ~?: t/J; hence t/J/~ E Co('u~. +). Then, by (4),

~ C sup II~(' + r) m,(' + r)ll q
,>0
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(6)

~ CIImII RL(q,x)

uniformly in t > 0, i.e., (5) is dominated by (1). The converse inequality is
proved analogously and the extension to all IX > 0 follows the same pattern;
one has to additionally use part (i) of the following theorem which
describes the Sobolev-type embedding behavior of the RL(q, IX) spaces.

THEOREM 1. Let 0 ~ P< IX. Then, in the sense of continuous embedding,

(i) RL(q,lX)cRL(q,P), l~q~CXJ;

(ii) RL(q, IX) c RL(r, P), IX - P= Ilq - I/r, 1 < q < r < 00;

(iii) RL(q,lX)cLoo,IX>I/q, I~q~CXJ;

(iv) RL(I,IX)cRL(q,P), I-I/q<rx-P, l~q<oo.

Proof (i) By (2), h(f1) = g; -I [( - iO")P - xJ * h(~J in the distribution sense
which in the present situation implies (cf. also [6, Sect. 3J) that

II (tPm,)(P)1I q= C II rr X
- p- l(tP(r + . ) m,(r + . ))(ClJdrt

~CllmIIRL(q.~)r r X
-!3-

i dr.
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(ii) This is an immediate consequence of the Hardy-Littlewood
theorem on fractional integration (see [7, p.288]), which says that
( - iu)P - ~ is the symbol of a bounded operator from U into L'.

(iii) By (3) and Holder's inequality we obtain

(
2 )l/q,

ItP(s)mls)1 ~CIImIIRL(q,~) t r(~-l)q'dr ,

where the last constant is finite if rt> l/q. Since tP is a nonnegative bump
function we thus have

(iv) By a slight variant of a theorem of Bernstein (cf. [9,
Theorem 5]) one can show that ( - iu)P(z + (- iu)~) - 1 is the Fourier trans­
form of an U-function if rt - P> l/q', 1< q' ~ (fJ (here the constant z E C is
chosen in such a way that z + (- iu)~ never vanishes for fixed rt).

Hence, the convolution theorem and Minkowski's inequality give

II (,pm, )(lJ)11 q

~ 11g;-1 [z ~~~};tJt {llz,pm,lll + IlmIIRL(l.~)}

from which the assertion follows by (6),

2. CONNECTIONS WITH OTHER LOCALIZED POTENTIAL SPACES

Again let h be an integrable function with compact support in (0, (fJ).
Define the Riesz derivative of order rt by

[D~h]" (u) = lul"h" (u), u E IR,

in the distributional sense and, analogously, the Bessel derivative by

LEMMA 2. If 1 < q < (fJ and a > 0, then

(7)
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and

sup IIDB[q>m,Jll q
,>0

are equivalent to the norm (1) on RL (q, a:).

Proof Since
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(8)

and the Hilbert transform (with symbol - i sgn 0") is a bounded operator
on U, 1 < q < 00, the equivalence of (l) with (7) is obvious.

Lemma 2 in [10, p. 133J shows that

IIDHq>m,J II q:=::; IIq>m,11 q + IID'R[q>m,J [I q'

Le., (8) majorizes (7). Conversely, by (6), the term IIq>m,ll q can be
dominated by the norm (l) which, by the above, is dominated by (7), com­
pleting the proof.

In [6J, two of the authors introduced the space WBVq,et of functions of
weak bounded variation which turns out to coincide with RL(q, a:), a:q> 1,
as we will see in Theorem 2. Let us point out that multiplier theorems are
most naturally proved in the RL (q, a: )-context, whereas the WBVq£

conditions are easier to verify.
For a locally integrable function hand 0< b < 1 we define [6 J the frac­

tional integral

1 flU
I~(h)(t) = r(i5) , (s - t)b-1h(s) ds,

=0,

and the fractional derivatives

(b) d I-b
/1 (t) = (}~Cf) - d/W (h)(t),

h(al(t)=(_ d/dt)[aWet-[et])(t),

o<t<w

t~w

a:>O
(9 )

whenever the right sides exist ([a: J denotes the integer part of a:). We
assume from now on that I~-b(h)EACloc' w>O, if b=a:-[a:J>O and
h(b), ..., /1(a-l) E AC,oc if a: ~ 1 when we speak of (fractional) derivatives in
the sense of (9).
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Then the definitions (2) and (9) coincide for integrable functions h with
compact support in (0, <Xi) (see [6, Sect. 3]) and therefore we utilize the
same notation for a fractional derivative. Now the space of functions of
weak bounded variation is described as follows:

where

(

2
m dt)l/

q
Ilmllq,~=llmllco+sup f It~m(~)(tW- ,

mE2 2m-1 t

= Ilmil CO + ess SUp It~m(~)(t)l,
1>0

THEOREM 2. If ~ > llq and 1~ q ~ <Xi, then

RL(q,~) = WBVq.~

with equivalent norms.

Proof If mE WBV q.~ then

q< 00

q = <Xi.

=Ct~q-l (r~ + r::) 1(q)lltm)(~)(sWds

== II + 12 , say.

A slight modification of the proof of Lemma 10 in [6] shows that
mE WBVq,~ if and only if q)1/tm E WBV q,~ for each t > 0 and
SUPt>o IIq)l/lmllq,~ < <Xi. Moreover,

Then

Ilmllq.~~suPO II<pl/t m llq,,'
t>

(10)
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Concerning II, observe that

by definition (9), and therefore
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Thus WBVq,acRL(q,ex).
Now let mERL(q, ex). In view of (to) we have to consider the integrals

R,I>O.

Clearly I R.I = 0 when R > 4t. If R < t18, then as above

:( Clll,6mlll~:( CIImllh(q,a)

by Theorem l(iii). Finally, if tI8:(R:(4t,

Since the required A C\oc smoothness conditions for 1,61/1 m to be in WBVq,a
are easily verified (cf. [6, Sect. 3]), this completes the proof.

3. INTERPOLATION PROPERTIES OF RL(q, ex)

We reduce the problem to the analogous result for Bessel potential
spaces

Using Calderon's [1] lower and upper complex interpolation methods, it is
well known that

(11 )
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O<()<1. (12 )

Analogously, we have

THEOREM 3. If a l > a Q > 0, 1 < qQ, ql < 00, and (12) holds, then

In order to prove Theorem 3, we first need some preliminary results. Let
L OO(L~) denote the Banach space of L~-valued measurable functions F(t),
t> 0, such that

From [1, Sect. 13.6] it follows that

L OO(L~) = [L OO(L~~), L oo(L~:)]a, (13 )

provided () and the a's and q's satisfy the conditions in Theorem 3,
With [f]ql denoting the equivalence class of functions g such that

¢Jf= ¢Jg a.e., define the Banach spaces of equivalence classes [f]ql of
functions f with ¢Jf E L~ by

L~,ql = {[f]ql: II [f]qlll L~.• = II¢Jfll L~ < 00 }.

Let n: L~ ~ L~.ql be defined by 11:(/) = [f]ql' Then 11: is continuous and it
induces a continuous map

where [F]ql(t) = 11:(F(t)) = [F(t)]ql and

11:*(F) = [F]ql' (14)

LEMMA 3. If a> 0 and 1 < q < 00, then there exist continuous maps .91
and fJB such that

.91: RL(q, a) ~ L'.D(L~), (15)

fJB:LOO(L~,ql)~RL(q,a), (16)

PAo 11:* 0.91 = IRL(q,iX) (identity map on RL(q, a)), (17)
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and

Proof First, for f E RL(q, a), define

(.xIf(t»(x) = t,6(x) f(xt).

259

The fact that .xlf( t) is L~ -valued measurable follows from the observation
that, since L~ is reflexive [12, p. 198], it suffices by Pettis' theorem [5,
Theorem 11, p. 149] to show that II.xIf(t)-.xIf(s)IILq--+O as s--+ t, which is
easily verified. It follows from Lemma 2 that '

Next, for [F],p E L oo(L~,,p) define

where c=(JO"t,62(u)du/u)-1. Notice that if [F],p=[G],p, then
¢(x )(F(t»(x) = t,6(x)( G(t) )(x) and so fJI is well-defined. Since, for
fERL(q, a),

(fJI 0 n* o.xl) f(x) = fJI( [t,6(. ) f(· t)],p)(x)

=c100

t,6(~) ¢(~)f(x)~t

=cf(x)f
OO

t,62(u)dU=f(x),
o u

it is clear that fJlon*o.xl=/RL(q,a)' To see that fJI is continuous, first
observe that

For fixed u, t,6(xu/t)(F(t»(xu/t)t,6(x) =.0 unless u/2~t~2u. Hence, by the
integral Minkowski inequality,
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1181( [F],p)11 RL(q,~)

~CSUp esssup IID~{¢J(~)(F(t))(~)¢JC)}11f2udt

U > 0 u/2 ,;; (,,; 2u t t q u/2 t

= C SUp ess SUp II¢J (~) (F(t))(~) ¢J(- )11
u> 0 u/2 ,,; t ,,; 2u t t L~

~C SUp esssup 11¢J(')(F(t))(')¢J('s)IILq
1/2,,; s,,; 2 t> 0 "

This completes the proof of Lemma 3 and leads us to our

Proof of Theorem 3, Suppose that the hypotheses in Theorem 3 are
satisfied, The fact that

with a continuous inclusion follows from Lemma 3 by using the mappings

RL(q, (X)~ L CD(L~) = [L'D(L%g), L CD(L%:)]8

~ [LCD(LqO ), LCD(UI )]8
~o,</J ~l,</J

~ [RL(qo, (Xo), RL(qJ' (Xd]8

where d, n*, and f!4 are the maps induced by (15), (14), and (16). On the
other hand, from

[RL(qo, (Xo), RL(ql, (Xd]O~ [L CD(L~~), L CD(L%:)] Ii = L CD(L%)
n* ~

----+ LCD(L~,</J)----+RL(q,(X)

we find that

with a continuous inclusion, which completes the proof.
It should be noted that since, by [6, Theorem 3], WBV q,~ is equivalent

to the localized Bessel potential space S(q, (X) when (X> l/q, 1 < q < 00, and
since Connett and Schwartz [4] have shown that the spaces [S(qo, (Xo),
S(qI' (X I)] Ii and S(q, (X) are not equivalent unless qo = q I and (xo = (X J' the
space [RL(qo, (Xo), RL(ql' (Xd]1i in Theorem 3 cannot be replaced by the
space [RL(qo, (Xo), RL(ql, (Xd]Ii'
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During the preparation of this paper we received a preprint by
Muckenhoupt, Wheeden, and Young entitled "Weighted U Multipliers,"
which also considers the RL(q, ex) spaces.
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